Improved Perturbation Bounds for the Continuous -timeh∞- Optimization Problem
نویسندگان
چکیده
New local perturbation bounds are obtained for the continuous-time H∞-optimization problem, which are nonlinear functions of the data perturbations and are tighter than the existing condition number based local bounds. The nonlinear local bounds are then incorporated into nonlocal perturbation bounds which are less conservative than the existing nonlocal perturbation estimates for the H∞-optimization problem. Copyright c ©2005 IFAC
منابع مشابه
Convex Underestimation of C2 Continuous Functions by Piecewise Quadratic Perturbation
Clifford A. Meyer and Christodoulos A. Floudas Department of Chemical Engineering, Princeton University, Princeton, NJ 08544, USA Abstract This paper presents an efficient branch and bound approach to address the global optimization of constrained optimization problems with twice differentiable functions. A lower bound on the global minimum is determined via a convex nonlinear programming probl...
متن کاملA Continuous Optimization Model for Partial Digest Problem
The pupose of this paper is modeling of Partial Digest Problem (PDP) as a mathematical programming problem. In this paper we present a new viewpoint of PDP. We formulate the PDP as a continuous optimization problem and develope a method to solve this problem. Finally we constract a linear programming model for the problem with an additional constraint. This later model can be solved by the simp...
متن کاملA novel technique for a class of singular boundary value problems
In this paper, Lagrange interpolation in Chebyshev-Gauss-Lobatto nodes is used to develop a procedure for finding discrete and continuous approximate solutions of a singular boundary value problem. At first, a continuous time optimization problem related to the original singular boundary value problem is proposed. Then, using the Chebyshev- Gauss-Lobatto nodes, we convert the continuous time op...
متن کاملPerturbation bounds for $g$-inverses with respect to the unitarily invariant norm
Let complex matrices $A$ and $B$ have the same sizes. Using the singular value decomposition, we characterize the $g$-inverse $B^{(1)}$ of $B$ such that the distance between a given $g$-inverse of $A$ and the set of all $g$-inverses of the matrix $B$ reaches minimum under the unitarily invariant norm. With this result, we derive additive and multiplicative perturbation bounds of the nearest per...
متن کاملCombining Approaches to Improve Bounds on Convex Quadratic MINLP Problems1
Bounds on the optimal value of a convex 0-1 quadratic programming problem with linear constraints can be improved by a preprocessing step that adds to the quadratic objective function terms which are equal to 0 for all 0-1 feasible solutions yet increase its continuous minimum. The continuous and the CHR bounds are improved if one first uses Plateau’s QCR method (2005), or one of its predecesso...
متن کامل